Introduction to Unity: Roll-A-Ball Basic Interactivity

1) Starting with the Unity Launcher:
a. Creating a new project: New -

| h New

@ Unity Hub 202 - X
& unity a O
® Projects Projects ADD
€ Leamn

= Installs

N

You have no project here.

Click on New if you want to create one, Add if you want to add one to
your project ist. Visit the Lean section if you prefer a tutorial to get
started

Hub 2.1.2 is available. To install the update you need to restart the Hub.

i. Project name:
¢ Note — Name it LastNameFirstName_RollABall
ii. Location: click on the dots to navigate where you want your project to live
iii. 3Dvs.2D
e Pick 3D for now
iv. Hit Create Project

@ Create 2 new project with Unity 2019.3.006 - X

Templates Settings

Project Name *

DunsireNikki_Rollaal|

()

Z

¢

C:\Users\ndunsir5.AD\Desktop

©
©

2)

3)

Once Unity is open:

b)

c)

File = Save scene as =

i) Double click on the folder called it ‘Scenes’ to open it up
i) Type a name for your scene file: “01_RollABall”

ii) Hit Save
Delete the “SampleScene”

Create a primitive plane. We can do this in two ways:

b) Game Object (main menu) = 3D Object - Plane
—

EGameOhject Component Window Help

Create Empty Ctrl+Shift+N

I Create Empty Child Alt+Shift+N

| 3D Object 3 Cube

L 2D Object 3 Sphere
Light 3 Capsule
Audie 3 Cylinder
Video 3 Plane
ur 3 Quad
Particle System Ragdoll...
Camera

Terrain

Center On Children Tree
Make Parent Wind Zone
Clear Parent 2D Text
Apply Changes To Prefab
Break Prefab Instance
Set as first sibling Chil—
Set as last sibling Ctrl+-
Move To View Ctrl+Alt+F
Align With View Ctrl+Shift+F
Align View to Selected
Toggle Active State Alt+Shift+A

This should place a plane at the Origin for us.

b) Hierarchy - Create - 3D Object - Plane

= Hierarchy _ # Scene

OR

L D ct 5 o
nEpecior Body) /11 =~ A A Aa- &
[Plane | [] Static v
Tag [Untagged %] Layer [Default t] U - abe X, X° ER’! -, A
¥ .~ Transform &, e
Position X0 ¥ [0 Z0 Reset
Rotation ®|0 ¥ [0 Z0
Scale x[1 [¥ [1 |z [1 Move to Front
¥ |2 Plane (Mesh Filter) a Maove to Back
Mesh [Plane —| Copy Component
v izl M Mesh Collider Paste Compenent As New
ST = Paste C tVal
A 0 aste Component Values
Skin Width 0.01 Reset Position
Is Trigger - Reset Rotation
Material |Ncne (Physic Material) | Reset Scale
Mesh W Flane | e
Rename the plane to ‘Ground’
Scale the planeupto 2,1, 2
Scale B [1 2|2 |

i) Note—you can’t scale up in Y b/c this object is single sided. However, if you gave it a negative number, it

Create 7| (@7Al ||| Shaded
o Create Empty by
Create Empty Child
3D Object Cube
2D Object Sphere
Light Capsule
Audio Cylinder
Video Plane
U1 Quad
Particle System Ragdoll...
Camera Terrain
Tree
Wind Zene
30 Text

If it’s not at the origin, reset its value in the Inspector

would flip the plane the other direction and you wouldn’t see it unless you rotated your camera
underneath it. Making the non-renderable side transparent is called Backface Culling.

4) Create a Sphere (in the same why you created the plane)
b) Name it ‘Player’
c) Make sure it’s at the Origin
d) MoveitupinY:0.5
Position ® 0 ¥ 10.5 Z|(0

i) Note —all objects in Unity take have default size of 1, 1, 1 or 1,2,1. If the Sphere is sitting at the Origin like
the plane is and it’s sitting half way through it, moving it up by half will rest it perfectly on top.

v

5) Let’s add a material to the Ground

b) In the Project Tab = Rt mouse click over the Assets folder = Create - Folder
T

| create -| _
¥ | /Favorites Assets -

©L Al Materials &5 scenes

L All Models

(L All Prefabs

©LAll Modified

L All Conflicted

=] Create 3 Folder
Show in Explorer cé Seript
Eben Javascript
L Shader 3
Open Scene Additive Testing »
Tmport New Asset... Scene
Import Package » Prefab
EpmRle e Audio Mixer
Find References In Scene
Select Dependencies L=
Lens Flare
Refresh Ctrl+R =
R Lightrmap Parameters
Reimport All S N
i i Animator Cantroller
Open C# Project Animation
Animator Override Controller |
Avatar Mask

Physic Material
Physics Material 2D

GUI Skin
Custom Font

Legacy

c) Rename this folder ‘Materials’
d) Highlight the Materials folder = Rt mouse click 2 Create = Material
i) Name the new Material: ‘Ground_mat’
i) Note —we should now see a new Material node in the Materials folder

e) Inthe Inspector & Change the Albedo color to Blue (or a color of your choice) by clicking on the swatch

] Inspector
u Background [%,
Shader | Standard . |
Rendering Mode | Opague e
Main Maps
~ oAlbedo 14
@ Metallic (o

f) From the Materials folder, drag the Ground material to the plane in the scene.

b4

s

Player Control

1) Let’s now setup the player behavior:
a) Setting up Contact:

i) Select the Sphere

ii) Inthe Inspector > Add Component
= Physics 2 Rigidbody
= Note — this will allow the Sphere to behavior properly when it bumps into things...i.e. it won’t move

through other objects.

iii) Note — Because we created the primitive sphere in Unity, notice that it has a Sphere Collider already
applied to it. This matters when we’re working with objects that will interact with other objects...which
we’ll discuss more later. For now, make a mental note of it.

b) Setting up Movement:
i) Note —to setup movement via our keyboard that drives the sphere we’ll need to use a script.

i) Create a new folder within Assets called ‘Scripts’
= To create a new script, we can do this in one of three ways:

7
° [] o "
Assets > Create > C# [Don’t do for now e Project Tab = Create (Over the Scripts Folder) >
Fle Edit [Assets| GameQbject Component Window Help . .
M e __ C# Script [Do this]
= Hierard | Show in Explorer C Script lﬁ ijeT -
S | Open Creats - <
v € rolla Delete et ot ¥/ Favorites Assets - Scripts
Main C Shader Le ©) All Materials
Directi Open Scene Additive Testing » LAl Models S 7L 0
Groun
- — = k)
Import Package » Prefab © all Conflicted
Epnier Audio Mixer oo
Find References In Scene e
i Material & Materials
Select Dependencies
Lens Flare ﬁscen!!
Refresh Cri+R Reles Tadiie Create v Folder
Reimport Lightmap Parameters Show in Explorer Ceserpt
Reimport Al Spites » Open Javasciipt
s Animator Controller Delete Shader v
Open C# Project Animation Open Scene Additive Testing v
- Animator Override Controller 0 R

Rename the Script to ‘PlayerController’

Drag the script onto the Sphere in the Scene

Open up the Script. We can do this in a couple of different ways:

(i) Double click on it in the Scripts folder OR

(ii) Click on the Settings Gear of the script in the Inspector once it’s added to the sphere

V@ [+ Player Controller (Script)
Script PlayerController Reset
D Default-Material @ e
Shader | Standard
> hader andar el
[Add Component [izElnn
Copy Component
Paste Component As New

Paste Component Values

Edit Script
T
(iii) Note — this should open up Visual Studio which is where we’re going to edit the script. If

you’re on a Mac, it might open MonoDevelop. Either is fine. Visual Studio won’t compile on a

Mac OS, as its PC based.

1. For now, we are not going into the ins and outs of the code, we simply want to explore
how this process works and how it’s applied.

(iv) In the Code Editor:
1. Remove the text that’s in the document and replace it with:

using UnityEngine;
using UnityEngine.UI;
using System.Collections;
public class PlayerController : MonoBehaviour
{
public float speed;
private Rigidbody rb;

void Start()

{
rb = GetComponent<Rigidbody>();
}
void FixedUpdate()
{
float moveHorizontal = Input.GetAxis("Horizontal");
float moveVertical = Input.GetAxis("Vertical");
Vector3 movement = new Vector3(moveHorizontal, ©.0f, moveVertical);
rb.AddForce(movement * speed);
}

PlayerController.cs® + X

2 RollABall = ¥z PlayerController ~1 @ speed
= ~using UnityEngine;
: using UnityEngine.UI;
? using System.Collections;
5 Slpublic class PlayerController : MonoBehaviour
s ¢
7
8 | public float speed;
9
18 private Rigidbody rbj
12 = vold start()
13
14 rb = GetComponent<Rigidbody>();
15 ¥
16
17 = void FixedUpdate()
18
19 float moveHorizontal = Input.GetAxis("Horizontal");
20 float moveVertical = Input.GetAxis("Vertical");:
21
22 Vector3 movement = new Vector3(moveHorizontal, @.8f, moveVertical);
23
24 rb.AddForce(movement * speed);
25 1
26
27 1
28

2. Save the code file

Play test!

(i) Inthe Inspector = change the Speed value to something other than 0

Script
Speed

T ¥ Player Controller (Script)

@
]

FlayerCaontraller

El |

D Default-Material
» Shader | Standard

@

L2

(ii) Hit Play on the player controls

(iii) Use W,A,S,D to control the movement of the Sphere

PR

Camera Setup

1) Position the Camera so that it’s up above and angled down toward the player

¥ A Transform Q==
Position X0 Y10 Z -10
Rotation X145 Y0 Z 0
Scale X1 ¥ (1 Z|1

Note — how we setup the camera in relationship to the player will matter. We want them pointing forward
down the same axis. So, if Z is the forward axis of the camera, we want Z to be forward on the sphere as well.
Otherwise, when we apply our script, our controls may end up backwards.

2) We want the camera to move relative to the Player. One thing we could do (but won’t) is:
a) Hierarchy = Drag the Main Camera object over the Player Object to Parent them.

= Hierarchy | =
| Create '| Al \
v QI:I2_RoIIABaII_PIayerSetupComplete* =
Directional Light
Ground

Main Camera

i) Note — So right now the camera will follow the object as it moves. This is a typical 3™ person setup. The
only problem with this however, is that as soon as the player starts rotating (which it’s going to do on all
three axis) the camera will do the same. So, we can’t do it this way, we’ll need to use a script.

= Drag the Main Camera back out of the Player in the Hierarchy to unparent them.
i) Selectthe camera

= Inspector 2
e Add Component - New Script >

Add Component Add Companent
Ql
Component 4 New Script
Mavigation . Y Name
Audio 5 [NewBehaviourSeript]
Video 3 Language
Rendering >
Layout *
Miscellaneous >
Analytics 3
Scripts *
Event L3
Metwork .
uIr .
AR 3
Mo e 3 l Create and Add

e Rename the script ‘CameraController’
e Hit CreateAndAdd

= Find the script in the Assets folder and move it into the Scripts folder

= Open the Script Up in Visual Studio

Remove the text that’s in:
Replace it with:

using UnityEngine;
using UnityEngine.UI;
using System.Collections;

public class CameraController : MonoBehaviour

{
public GameObject player;

private Vector3 offset;
void Start()

{
¥
void LateUpdate()
{

}

offset = transform.position - player.transform.position;

transform.position = player.transform.position + offset;

It will look like this:

g’ﬁRU”ABE” ~ %z CameraController - l3:-:'9LateU;:ldatel:I

“using UnityEngine;

2 using UnityEngine.UT;

3 using System.Collections;

5 Slpublic class CameraController : MoncBehaviour

6 | |{

7

3 public GameObject player;

=1

18 private Vecteor3 offset;

12 = void Start()

13 {

14 offset = transform.position - player.transform.position;
15 3

16

17 = void LateUpdate()

13 {

19 transform.position = player.transform.position + offset;
28 ¢

21 }

22

Save the script and go back to Unity

PlayerController.cs Assets\Scripts\CameraController.cs™ +# X _

[]

iii) Now we need to connect the Player to the Camera so that our Script will work:

=
=
=

Select the Main Camera

Go to the Inspector

In the Camera Controller (Script) drop down = Drag the Player object from the Hierarchy to the Player
slot of the Script to make the connection.

File Edit Assets GameObject Component Window Help

(O BN S =[] [=center| 6 cioball

‘= Hierarchy @ Inspector

SEAT .
| “5'“ (e = @ Main Camera] O static ~
v 0 i,

Dii-n‘mml |.igh; " Tag | #] Layer [Default 1)

Ground ¥ .~ Transform L

Player Position x0 ¥[10 z[-10

Main Came .. Rotation x[as Iro 1zlo |
Scale X[1 ¥ l2[1 |

¥ & ¥ camera ,
Clear Flags Skybox "
eackaraund I
Culling Mask Everything N

Projection | Perspective i
Field of View
Clipping Planes Near }& |
Far 1000 |

1 W1
Depth [-1 |

Rendering Path Use Graphics Sertings B
Target Texture None (Render Texture) | ©
Occelusion Culling o
Allow HDR o
Allow MSAA 7]

[Display 1 4]

Target Display

8 Project

| Craate -| Player @Player] o

v Favorites Assets » Scripts Add Comy
3 }_ ponent
LAl Materials [cameraController i []

= Play test!
iv) Note — for added functionality, try using the camera scripts that we used in our third person setup of the

basic unity scene, instead of the one above!

Play Area Setup

1)

Create an Empty Game Object

a)

File

GameObject = CreateEmpty

= Hierarchy
| Create 'l oAl

Edit Assets IGameDhject Component Window Help

Create Empty Ctrl+5Shift+M .

Create Empty Child Alt+5Shift+M
3D Object 3

Note —

we can use Empty Game Objects to organize and group things in the Hierarchy.

Name this GameObject ‘Walls’
Verify that is sitting at the Origin. If it isn’t, reset it so that it is.

Create a Cube

Create Empty Ctrl+Shift+M

Create Empty Child Alt+5Shift+N

= Hierarchy
| Create '| o All 3D Object 3 Cube
v € 02_RollABal 2D Object v Sphere
Directional Lig .
” cround Light 4 Capsule
Plaver Anrdin 3 Culinder

Rename it ‘WallWest’
Verify that it is also at the Origin. If it isn’t, reset it so that it is.

h)

)

k)

In the Hierarchy:
i)

= Higrarchy

ii) Adjust its Transforms:

Duplicate the wall by hitting Cntrl d
i) Rename it to WallEast
ii) Adjust its Transforms:

Duplicate the wall
i) Rename it to WallNorth
ii) Adjust its Transforms:

Duplicate the wall
i) Rename it WallSouth
ii) Adjust its Transforms:

Play Test!

Drag WallWest into the Walls group to parent the cube to the empty game object we created.

10

Collectables Setup

1)

3)

Create a new cube

a) Reset it to the Origin if it isn’t already there.
b) Note — we can hide the Player for now if we want by clicking on checkbox next to the name of the object in the

Inspector (this allows us to make an object active or not).

v

& Inspector

Tag

28 Navigation

e

‘«' ¥ |Player

Untagged

||'A. Transform

c) Rename the Cube to ‘PickUp’
d) Adjust its Transforms:

© [nspector | 82 Navigation a-=

[|PickUp | [J Static =

Tag [Untagged ¢ | Layer | Default i |

v A Transform @ ==
Position X 0 ¥ 0.5
Rotation X 45 Y 45
Scale ¥ 0.5 ¥ 0.5

Let’s have the PickUp rotate as it sits there. To do this we’ll need another script:

a) Select the PickUp

b) Inspector = Add Component > New Script
i) Name this Script ‘Rotator’
ii) Click CreateAndAdd

c) Place the new script in the Scripts folder
d) Open the new Scriptin VS
i) Remove the default code as we did before

i) Replace it with the following and then save the file:

Play Test!

using UnityEngine;
using UnityEngine.UI;
using System.Collections;

public class Rotator :

{

void Update()

{

PlayerController.cs
P4 RollABall

2
3
5
[
7
8

~using UnityEngine;

using UnityEngine.UT;

CameraController.cs

MonoBehaviour

= *z Rotator

using System.Collections;

—lpublic class Rotator :

= wvoid Update()

MonoBehaviour {

transform.Rotate(new Vector3(15, 30, 45) * Time.deltaTime);

Assets\Scripts\Rotator.cs® + X

- mﬁ Update()

transform.Rotate(new Vector3(15, 3@, 45) * Time.deltaTime);

i

bl o

11

4) Now we’d like to place duplicates of this cube around the play area as our pickup objects!

a. Note — before we can do this however, we need to create what’s called a Prefrab. A Prefab is like a
template that contains a blueprint for a game object or game object family. In other words, it's kind of like
creating an instanced object with set parameters. When we create a prefab, we can drag and drop the
prefab into the scene. When we make changes to a prefab object, it will update all of the other duplicates.

a) Create a Prefab folder in our Project structure
Drag the PickUp object from our Hierarchy to the Prefabs folder

= Hierarchy
| create -| AT
v Q 03_RollABall_CameraSetupWallsComplete® ~=

Directional Light

Ground

Flayer

Main Camera

» Walls

PickUp

8 Project
| create -
¥ 7 Favorites Assets - Prefabs
@,ﬁll Materials
L All Models
@t,AII Prefabs
All Modified
(@, Al Conflicted

VﬁA!!:t!
&3 Materials
ﬁ Scenes

ﬁ Scripts

c) Note —anytime we drag something from the Hierarchy to the Project structure like this we create a new Prefab
asset containing a blueprint of our game object.

d) Let’s organize our Hierarchy prior to creating our duplicates!
i) Create a new Empty Game Object and name it ‘PickUps’
ii) Reset it to the Origin if it's not currently located there.
iii) In the Hierarchy = Drag the first PickUp Object into the new PickUps group.

12

e)

f)

In the Top down view, move the first PickUp where you want it on the board and then duplicate it. Move the
duplicates to your desired location around the board. You may need to adjust your pivot from Local to Global.

= Hierarchy
| Create ~| XA p)
v €0 03_RollABall_CameraSetupWallsComplete* =
Directional Light
Ground
Flayer
Main Camera
» Walls
¥ PickUps
PickUp

Pickup (1)
PickUp (2)
Pickup (3)
PickUp (4)
Pickup (5)
PickUp (6)
PickuUp (7)

Play Test!

Now let’s change the color of the cubes (we will need a new material for this):

a)

o O T

)
)
)

Select our current material in the Materials folder

Duplicate it (Cntrl d)

Rename it ‘PickUp_Yellow’

In the Inspector = Change the Albedo color to Yellow (or any other color that you want)

Let’s apply this to our Prefab.
i) Drag the Material to one of the PickUp cubes
ii) Click on the cube
iii) In the Inspector >
= Notice there’s now a Prefab line item
= Click on the Overrides drop down

= Apply All
© Inspector |
& PickUp (&) |) Static =
Tag [untagged 4| Layer | pefault a
Prefab [Open | Select] II[Overridg =]
vA Transform Overrides to iy PickUp
Position in € Scene
Rotation ¥ Ly PickUp (8)
Scale A Transform

| Mesh Renderer
v|.| Cube (Mesh Filter] &

Mesh
- ugMesh FrErEErEr @ Click on individual items to review, revert and apply.
» Materials [R — ——
ever i
Light Probes 2

iv) Note — this will apply the material to all of the cubes

Let’s make these a little more fun!
i) Click on the PickUp_Yellow Material
ii) Inthe Inspector 2 Rendering Mode = change to Transparent

13

] Inspector

a Ground_vellow @ #.
Shader | Standard =
Rendering Mode | Transparent 1 m

Main Maps
 oAlbedo 12
!_!aMetaIIic . D
iii) Click on one of the PickUp cubes
iv) In the Inspector 2 Add Component = Effects = Halo
= Size: Adjust the size of the glow you want
= Color: Adjust the color of the glow
v [¥Halo 3%
Color ——
Size 0.59
ﬂ PickUp_Yellow 3o,
> Shader [standard -

= Hit Apply to update the Prefab

© Inspector

¥ Pickup (&) | [Static =
Tag [Untagged 4| Layer | Default al
Prefab | Open | Select) I[Overrides ']l
v A Transform Overrides Ifn W PickUp
Position in € scene
Rotation ¥ Ly PickUp (8)
Scale A Transform

| Mesh Renderer
¥ |/ Cube (Mesh Filter] &

Mesh

@ Click on individual items to review, revert and apply.

v || ¥Mesh Renderer
» Materials

Light Probes

3 Scene ¢
Shaded - |0

14

Collectables Picked Up

1) Now we need to tell the Player what to collide with and what happens when the collision happens.
2) Make the Player active again (if you hid it before)

W' 22 Mavigation SE

| & Wlayer

Tag | Untagged

¥ .~ Transform

3) Open up the PlayerController Script in VS
a) Add the following code right before the very last } and save:

void OnTriggerEnter(Collider other)

{
if (other.gameObject.CompareTag("Pick Up"))

{
}

other.gameObject.SetActive(false);

o IEEHECLIGCI DA il CameraController.cs Assets\Scripts\Rotator.cs
aRo\\ABaII ~| *z PlayerController - 9.;OnTr\ggerEnter(Colhderother] -
=

5 “lusing UnityEngine; =
: using UnityEngine.UT; =
. cins Svstem_Collections:
5 Flpublic class PlayerController : MonoBehaviour
(3
7
8 public float speed;
a
10 private Rigidbody rbj
12 B woid Start()
13
14 rb = GetComponent<Rigidbody>();
15 3
le
17 = void FixedUpdate()
18
19 float moveHorizontal = Input.GetAxis("Horizontal™);
20 float moveVertical = Input.GetAxis("vertical”);
21
22 Vector3 movement = new Vector3(moveHorizontal, B.8f, moveVertical);
23
24 rb.AddForce(movement * speed); =
25
26
27 = wvoid OnTriggerEnter(Collider other)
28 {
22 if (other.gameObject.CompareTag(*Pick Up"))
38
31 other.gameObject.SetActive(false);
32
330 3}
34 }
33

b) In the Project Structure - Prefab folder = select the Prefab PickUp object
i) Inspector = Open Prefab
= Tag > Add Tag

© Inspector 28 Navigation Servi
1w [|Pickup
Tag | Untagged i) Laye
w A Tr ¥ Untagged
Position Respawn
Rotation el
Scale .
EditorOnly
Y C ;
Mesh MainCamera
Y8 Player
Is Trigg GameController
Material
Center BRI

Note —in the code we’re referencing a tag that we need to create. This tag will only be associated with our
PickUps. This is how our Player will know to only pick up the PickUp objects and not things like the floor and
walls. The naming convention that we used in the script needs to be consistent with what we create here.

“Pick Up”. It is space and case sensitive!!

void OnTriggerEnter(Collider other)

i
if (other.gameObject.Compa r*eT{g ("Pick Up"))
{
other.gameObject.SetActive(false);
¥
¥
c) Click on the + button to create the new tag
d) Name it “Pick Up”
e) Hit Save
f) Click back on the PickUp Prefab
g) Inspector = Tag = Change to Pick Up
© Inspector 24 Navigation Servict
L' [« PickUp
Tag Layer
¥~ Tr ¥ Untagged B
Position Respawn
RatTtiun Finish
Seale EditorOnly
W | Cuy
Mesh MainCamera
v i B Player
Is Triggl GameController
Material Pick Up n:
Center |
Size Add Tag..
Play Test!

Note - You probably noticed that our sphere is still bouncing off our cubes. This is because our cubes are still using

colliders and we need them to be Triggers so that our Sphere can occupy the same space with each cube it runs
into them and essentially absorb them (or make them inactive upon contact) as per our code. To do this:

a)
b)

Select the PickUp Prefab
In the Inspector = Box Collider
i) Is Trigger: Check ON

vig ¥ Box Collider @ %
Is Trigger [+
Material Mane (Physic Material) @
Center ® o ¥ o0 20
Size X1 ¥l Z|1
i) Play Test!

16

6) Note —rright now everything appears to be working, but there is one issue and it has to do with performance and
resource depletion based on how Unity optimizes its Physics. As a performance optimization, Unity calculates all
the volumes of all the static colliders in the scene and holds this information in cache. This makes sense as static
collider shouldn’t move and this saves recalculating this information every frame. The problem with our scene is
that our cubes are rotating. Anytime we move, rotate or scale a static collider, Unity will recalculate all the static
colliders again and update the static collider cache. In doing this we’re tapping our system’s resources. As an
alternative we can move, scale and rotate Dynamic colliders as often as we want and Unity won’t re-cache any
collider volumes. Unity expects us to move colliders, but we need to indicate which ones are dynamic. We do this
by using the RigidBody component. Any game object with a collider and a Rigidbody is considered dynamic. Any
game object with just a collider and NO Rigidbody is considered Static. Right now, our cubes don’t have a
Rigidbody so they’re considered Static. So, Unity it is recalculating our Static collider cache every frame. So, we

need to add a Rigidbody to the PickUp object Prefrab.

a) Select the Prefab
b) Inspector = Add Component = Physics = Rigidbody

¥ 4 Rigidbody [%,
Mass 1
Drag [¥]
Angular Drag 0.05
Use Gravity o
Is Kinematic -
Interpolate | Mane t |
Collision Detection | Discrete ™

b Constraints
D Ground_Yellow G #
S Shader | Standard .|

[Add Component l

c) Note — Now our Cubes are dynamic. However, if we hit play they’ll just fall through the floor because ‘Use
Gravity’ is checked on and b/c we changed the cubes to Triggers, they no longer collide with the floor. We
could just uncheck ‘Use Gravity’, but although they would no longer respond to gravity, they would respond to

physics forces. So rather than checking off Gravity:

i) Is Kinematic: Check ON
= Now our Cubes will not react to physics forces and they can be animated and moved via their

transforms. This is great for things that have colliders like elevators and moving platforms as well as
objects with Triggers like our cubes, that need to animate or move by their transforms.

¥ % Rigidbody G %

Mass 1

Drag [¥]

Angular Drag 0.05

Use Gravity 4

Is Kinematic 4

Interpolate | Mone t|

Collision Detection | Discrete :]
» Constraints

D Ground_Yellow @ ==
» Shader | Standard v |

[Add Component]

= Play Test!
e Now things are working and performing the way they should
17

d) To Recap:
i) Static Colliders shouldn’t move (walls, floors, etc.)
i) Dynamic Colliders can move and should have a RigidBody component along with their collider
iii) Standard RigidBodies are moved using Physics forces
iv) Kinematic RigidBodies are moved using their transforms

Keeping Score and Ul

1) Note - We need something to store the counted PickUps and then add to that stored number. We can do this by
modifying the Player script. We also need something to display the count and let us know when we’ve ‘won’.

2) Create a new Ul text element (this will allow us to display text in our scene)
a) GameObject > Ul = Text

| GameObject | Component Window Help

Create Empty Ctrl+ Shift+N

Create Empty Child Alt+Shift+ N

3D Object 3

2D Object 3

Light 3

Audio 2

Video 3

u1 3

Particle System Image

Camera Raw Image

Center On Children Button
Toggle

Make Parent

Clear Parent Slider

Apply Changes To Prefab serely

Break Prefab Instance Dropdown
Input Field

Set as first sibling Ctrl+=

Set as last sibling T Canvas

Move To View Cerl-Alt+F R

Align With View Ctrle ShiftF ez

Align View to Selected Event System

Toggle Active State Alt+Shift+A _

Note —in order for text to behave the way it’s supposed to, it needs to be a child of a Canvas.

| = Hierarchy [IGRS

| Create *| arAll

1

|v) 03_RollABall_UT* -
| Directional Light
|| Ground
|| Player
|| Main Camera
> () Walls
» [PickUps

[iﬂi Canvas |

1 || EventSystem

[

)

b) Rename the text object ‘CountText’

c) Inspector >
i) Inthe text box type: Count

i) Color: change to white

‘

iii) We want the text to appear in the upper left corner of our screen in play mode:
= Open Anchor presets

= To give it a little more room:
e PosX:10
e PoxY:-10

19

3)

Now let’s create the Win text
a) GameObject 2 Ul - Text
b) Note —this will place the new text in our current canvas
c) Rename it ‘WinText’
d) Inspector >

i) Color: white

i) Fontsize: 24

ii) Text: You Win!!

iv) Open Anchor Presets

= Hold down Shift and Alt
= Select the center option
= Change the Pos Y: 75

20

4) Now let’s adjust our PlayerController script to keep count of our objects and display them via our text:
a) Open up the PlayerController script in VS
b) Add the flowing lines of code (highlighted in yellow):

using UnityEngine;
using UnityEngine.UT;
using System.Collections;
public class PlayerController : MonoBehaviour
{
public float speed;
public Text countText;
public Text winText;
private Rigidbody rb;
private int count;
void Start()
{
rb = GetComponent<Rigidbody>();
count = 0;
SetCountText();
winText.text = "";
}
void FixedUpdate()
{
float moveHorizontal = Input.GetAxis("Horizontal");
float moveVertical = Input.GetAxis("Vertical");
Vector3 movement = new Vector3(moveHorizontal, ©.0f, moveVertical);
rb.AddForce(movement * speed);
}
void OnTriggerEnter(Collider other)
{
if (other.gameObject.CompareTag("Pick Up"))
{
other.gameObject.SetActive(false);
count = count + 1;
SetCountText();
}
}
void SetCountText()
{
countText.text = "Count: " + count.ToString();
if (count >= 12)
{
winText.text = "You Win!";
}
}
}

c) Save the script.
d) Note -if (count >= 8): you will need to change this value depending on how many pickup objects you have in
your scene in order for the win screen to pop up!

5) Associate the text to Player (sphere)
a) Click on Player in Hierarchy
b) Inspector >
i) Drag the CountText object to the CountText variable of the Player
i) Drag the WinText object to the WinText variable to the Player

iii) Play test!

22

Building The Game

1) File - Build Settings

Build Settings

Add Open Scenes

C, Mac B Linux Standalone <4

Windows =
X6~
[]
[]
[]
[]
[|
[]
[]

Player Settings... m Build And Run

a) Hit: Add Open Scene
b) PC, Mac & Linux Standalone
c) Target Platform: Windows OR Mac OS X
d) Architecture: x86_64
e) Click Build
i) Create a new folder within your project structure called ‘Builds’
i) Open this folder
iii) Name your .exe: “RollABall”
iv) Hit Save
v) Note —To play your game open the .exe
vi) Note — Do not delete the folders that gets created along with the .exe. The .exe needs that info to run your
game.

23

